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Layer on a 

S U M M A R Y  
A perturbation solution is presented for the nonsimilar boundary layer flow past a moving surface with constant wall 
velocity. A zero pressure gradiant is assumed and the tangential velocity and stagnation enthalpy profiles are prescribed 
at the initial station. The eigen values obtained for the first order perturbation solution are integers and the eigen func- 
tions are the derivatives of the error function. The same Green's function is obtained for all the higher order perturbation 
equations, and the higher order perturbation solutions are given in integral form in terms of the Green's function. The 
analyses include both the momentum equation and the energy equation which is uncoupled with the momentum equa- 
tion, and which is subjected to a nonsimilar velocity flow field. 

1. Introduction 

The similar solutions for the laminar boundary layer formed on a continuous moving surface 
have been investigated by several authors [1-3]. The momentum equation governing such 
flow is the Blasius equation with nonvanishing velocity on the moving surface. Recently, 
Mager [4] considered the problem in which a similar boundary layer with zero velocity on 
the surface, which is described by the Blasius solution, is suddenly accelerated by a belt moving 
in the plane of the wall at a constant speed in the downstream direction. Solutions of the mo- 
mentum equation at positions very near and very far from the station where the belt is first 
encountered were obtained. The nonsimilar solutions of the boundary layer equation with 
zero pressure gradient were obtained as a perturbation from the Blasius solution by Libby 
and Fox [5, 6] for a flow past a stationary surface. They obtained the discrete eigen values 
and the corresponding eigen functions of the perturbation equations. 

In this paper, perturbation solutions are presented for the problem in which a fluid with 
zero pressure gradient flows past a surface moving with a constant speed which differs from 
that of the free stream. For this problem the tangential velocity of arbitrary profile which is 
close to the Blasius solution is prescribed at the initial station. The present problem is similar 
to the initial value problem of boundary layer flow treated in refs. [5] and [-6] with the exception 
that the tangential velocity on the surface is zero in refs. [-5] and [-6]. The present problem is 
different from that of ref. [4] since the sudden acceleration of the boundary layer from the 
initial station will not be considered here. 

Apparently, the present problem can be treated by the method of refs. [5] and [6]. In the 
formulation of ref. [5] the tangential velocity function f~(s, 4) is written as 

fr 4) =f~(4) +f l  r 4) + f2r 4) +. . .  (1.1) 

with the independent variables { and s defined as 

I x ~=p~ue(�89 ~) (p/pe)dy and s = p~UeUedx (i.2) 
o 

where p is density; u, velocity; #, viscosity; y, the normal coordinate; x, the coordinate in 
stream wise direction, and the subscript e represents properties at the free stream condition. 
The independent variable 4, instead of the Levy-Lees variable q = x/2{ as used in ref. [5] is 
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adopted here for convenience in the analyses. The basic solution fo(~) is the Blasius solution 
which satisfies 

f•" + 2Jof•'=O (1.3) 

subject to the boundary conditions 

f0(0) = 0 ; f~(0) = Uo/U e = q ; J~(~)  = 1 (1.4) 

with Uo, the velocity of the moving surface, and the notation (') represents derivative with 
respect to 4. The Blasius solution defined here is different from the conventional Blasius 
solution in which fo (0) = 0. Nevertheless the eigen values and eigen functions for a given value 
of q can be obtained in the same manner as ref. [5] by numerically integrating the first order 
perturbation equation and imposing the exponential decay of the velocity function f~ (s, 4) as 
~ o e .  Since the Blasius solution is a function of q, the eigen values obtained by this method 
will also depend on q. This will lead to a different set of eigen values and eigen functions for 
each value of q if the method of ref. [-5] is employed. It is the purpose of this paper to present 
a perturbation solution in which the eigen values and the eigen functions are independent of the 
Blasius solutions, and thus independent of q. In the present formulation the similar solution 
f0 (4) as well as the nonsimilar solution is expanded in power series of the perturbation parameter 
e. The eigen values obtained are integers and the perturbation solutions are given in terms of 
derivatives of the error function. 

The perturbation solutions of the momentum equation will be given in the next section 
followed by the perturbation solutions of the energy equation for an adiabatic wall and a 
constant enthalpy wall subject to a nonsimilar flow. The Green's functions of the higher order 
perturbation equations can be shown to be identical. Therefore all the higher order perturbation 
solutions can be obtained in terms of this Green's function. 

2. Momentum Equation 

Consider the nonsimilar boundary layer flow past a surface moving at a constant speed Uo 
as shown in Fig. 1. A zero pressure gradient is assumed, and the tangential velocity profile is 

- - L I  o - - ~  
So 

-Ue ~] 

/ 

Figure 1. Uniform flow past a continuous moving surface with a given initial velocity profile at s = s o. 

prescribed at the initial station s = s o r 0. The momentum equation governing such flow is the 
nonsimilar boundary layer equation [7], 

f,~r + 2 ffr162 4s(fJcs-f~r = 0 (2.1) 

where f(s, 4) is the modified stream function. 
The initial condition at s = s o is 

f,(So, 4)= Fo(~) (2,2a) 
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and the boundary  conditions at ~ = 0 and ~ = ~ are 

fr O) = q, f~(s, oc) = 1, f(s, 0) = 0 (2.2b) 

The tangential velocity profile F o (~) given at the initial station s = So is assumed to satisfy 
Fo (0)= q and Fo (oo)= 1, so that sudden acceleration of the boundary  layer as treated in ref. [4] 
is excluded from our consideration. To obtain a solution for f(s, ~) let 

f(s, ~) = f o  ({ ) -  o~w(s, ~) (2.3) 

wherefo ({) is the Blasius solution defined in Eqs. (1.3) with the boundary  conditions Eq. (1.4). 
The perturbation parameter  is defined to be c~ = 1 - q, with the value ofq assumed to be 2 > q > 0 
and q # 1. The nonsimilar solution w(s, ~) as the perturbations from the Blasius solution is 
considered, and the initial and boundary  conditions are then w (s 0, { )=  [fd ( { ) -  Fo ({)]/e and 
wr (s, 0 )=  wr (s, oo)= w (s, 0) = 0. The nonsimilar solution w (s, ~) as well as the Blasius solution 
is then expanded in power series of ~ as follows, 

W(S, ~)~" w(O)(s, ~)~-(XW(1)(S, ~ ) " 4 -  0 { 2 W ( 2 ) ( S ,  r  . . .  (2.4) 

fo (r = r - C~Wo (r - 0{ 2 W 1 ( r  - -  0{ 3 W 2 ( r  q-  . . .  (2,5) 

Substitution of Eqs. (2.3)-(2.5) into Eq. (2A) and equating the same powers of c~ yields the 
perturbation equations for the Blasius solution, 

50, % = 0 (Z6a) 

n 1 

5 0 ~ w ' . = 2  F, w " k W, k-1 n = 1, 2, 3 ... (2.6b) 
k - O  

Where the linear operator 501 is defined as 
d 2 d 

501 = ~ +  2~d~ 

The boundary  conditions for Eq. (2.6a) and (2,6b) are, respectively, 

w~(0) = 1, Wo(0 ) = w~(oo) --- 0 (2.7a) 

and 

w,(0) = w',(0) = w~,(oo) = 0 n = 1, 2, 3 . . .  (2.7b) 

The perturbation equations governing w (") (s, r are 

502 w(r ~ = 0 (2.9a) 

502w(c")(s, ~)= R,(s, ~) n = 1, 2, 3 ... (2.9b) 

Where 
(~2 (~ 

n - 1  

R , ( s , ~ ) = 2  Z 
k=O 

w(k) w ' 1-~ Wk W(~ k - l )  n - k -  

, u , ( n  - k -- 1)  j _  u , ( k )  u , ( n  - k - 1)  +WCk)w~[k-1)+2S[--Wk,vs~ T ,,~ ,vs~ 
"4" W* k' W~" - k -  1) - t-  u , ( k )  , , ,("-k- . , v ~ , ~ ,  ~)]} n = 1, 2, 3 ... 

The initial and boundary  conditions for Eqs. (2,9a) and (2.9b) are 

w(~~ ~)= F ( ~ ) =  [f~(~)-Fo(~)]/c~ 

w?)(s ,  0) = w?)(s ,  o0) = w(~ 0) = 0 

w(")t~_ ~)= w~")(s, O)= w~")(s, ~ ) =  w(")(s, 0) = 0 n = 1, 2, 3 " r t , ~ O ,  . . . . .  

(2.9c) 

(2 .10a)  

(2.10b) 
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The solutions w o and w~ u, th~ set of Eqs. (2,6) subject to boundary conditions (2.7) can be 
obtained readily. The results, are [12] 

w o = ~ erfc ~ - ~ - ~ ( e -  ~ - 1) (2.11) 

wl = ~z-~(1-zc- l ) (1-e-~2)+ (3~)e  -~2 erf ~ -  (2/7z) ~ erf2~' ~ (2.12) 

-(�89 erf~ erfc ~ -  (1/rc)~ erfc ~+~z -~ erf~ 

where erfc ~ is the complementary error function. Subsequent solutions in the sequences given 
by Eq. (2.6b) can be found by the following integrations: 

w', = 2 e-?2d~ 2 Wk(~')W,-k-l(~')er erfc ~ n = 2, 3, 4, ... (2.13) 

where K,  is a constant determined from the condition w',(0)=0, and is given by 

K. - 2  e-~2d~ Z . . . .  r ' 2, 3, 4, = W k ( ~ ) W n _ k _ l ( r  de  n . . . .  
�9 0 '~ k=O 

The solution w,(~) is then obtained by integrating w',(~), 

w,(4) = w; (~)d~ , n = 2, 3, 4 . . .  (2.14) 
o 

The approximate value off~' (0) can be obtained from Eqs. (2.5) and (2.11 ~ 2.14). The result is 

f~' (0) = (2 ~/Tr ~) (1 - c~z - ~) + c~ 3 w~ (0) + ... (2.15) 

values off~' (0) computed from Eq. (2.15) are shown in Fig. 2 together with that obtained from 
the numerical solutions of Eq. (1.3) subject to the boundary conditions Eq. (1.4) for various 
values off ' (0)  = q in the range of 0 < q < 1. 

In Eq. (1.3) the boundary conditions are given at r = 0 and r = o% and a trial-and-error process 
is usually required for the numerical solutions. For the numerical method adopted here the 
trial-and-error process is eliminated by transforming the two point boundary value'problem 
to an initial value problem [8]. Some of the numerical values o f f "  (0) obtained from Eqs. (1.3) 

o, I 
N u m e r i c a l  Solution 

f"(O) "--.. . . . . . . . . .  Perturbation Solution - 2 terms 
0.5 / "-. Perturbation Solution- 3 terms 

~ \ \  Perturbation Solut ion-  5 t e r m s  

0.4 

0.3 

0.2 

0.1 

0 .0  ~ , ~ , ~ ~ ,. 
0.2 0 .4  0 .6  0 .8  1.0 1.2 f'o(O)= q 

Figure 2. Comparison of exact solution and perturbation solutions for the Blasius solution. 
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and (1.4) also may be found in ref. [2]. It can be seen from Fig. 2 that for a small value of 
the approximate values offc;'(0) given in Eq. (2,15) give a good approximation to the exact 
numerical solutions. As is to be expected, for a larger value of e more terms of the perturbation 
solutions will be needed to obtain an accurate result. 

By means of separation of variables, the solution w~ ~ ~) of Eq. (2.9a) will be represented by 
a series of products as follows [10], 

W~0)( s, ~) • ~ Ak(S/So) -k/2 Ok(~) (2 .16)  
k 

The differential equation for 0k(~) is 

O'k' + 2~O'k + 2kOk = 0 (2.17) 

and the boundary conditions are 

0k(0)=0 and 0k(oO)--,0 (2.18) 

With this weak boundary condition at ~-+ 0% the eigen values k have a continuous spectrum 
k > 0. Since the exponential decay of the tangential velocity as ~-+ oe is essential for boundary 
layer behavior [9], it is necessary to impose a stronger condition, 

Ok(~)=O(~ -N) for any N > 0  (2.19) 

With Eq. (2.19) instead of the second equation in Eqs. (2.18) the eigen values are discrete and 
are even integers 2, 4, 6 . . . .  and the solutions 0k are the kth derivative of the error function [11]. 
The constant Ak is related to the initial data by the orthogonal condition of Ok with exp(~ 2) 
as the weight function, 

1 k f ~ A k = [~:/2 ( k -  1)!] F({)exp({2)Ok(~)d{ k =  2, 4, 6 ... (2.20) 
3 0 

Subsequent solutions, for n > 1, given by Eqs. (2.9b) and (2.9c) subject to homogeneous initial 
and boundary conditions are nontrivial due to the non-homogeneous term R,(s, ~), and can 
be obtained in terms of a Green's function G(s, {, ~, ~) defined in the same manner as ref. [5] by 

G ~ + 2  {G~-4s  Gs = 6 ( { -  ~)a{s-~) (2,21.) 

Using separation of variables, a series solution for the Green's function may be constructed. 
The result is 

G(s, ~, ~, ~)= - Z [u-~12k+3(k - 1)!]Ok(~)Ok(~)e72~(k/2)-'ls k/2 for s >~ 
k= 2,4,6,. . .  

= 0 for ~ > s >= s o (2.22) 

The solution w~ ") is then 

w~")(s, {) = G(s, {, g, ~)R,(g, ~)dgd~ n = 1, 2, 3 ... (2,23) 
so 

The skin friction function evaluated at the moving surface f0e (s, 0) is then given by the following 
expression : 

& ( S ,  0)  = - 0)3 
n=0 

=fd'(O)- k--2,4,6...2 {~:&(slso)~i201(O) -, n=l ~-" ~'+'[rc~lZk+3(k-1)!]Oi(O)x 

fO  's kl2' jskJeld    1 224, 
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3. Energy Equation 

The energy equation for a laminar boundary layer with a uniform free stream, the ratio of 
density viscosity product C-pl~/P~l~= 1 and the Prandtl number Pr= 1 can be written in 
terms of the dependent variables g (s, ~), the stagnation enthalpy ratio defined by g = hJhse, 
and f(s,  O, the modified stream function, by 

g~r162162 = 0 (3.1) 

We consider the nonsimilar flow given by Eq. (2,1) subject to the initial and boundary conditions 
(2.2a) and (2.2b). The energy equation (3.1) is uncoupled with the momentum equation, and is 
a linear equation. To find a perturbation solution let 

g(s, ~)= g(~ ~) +ag(l)(s, 4) +cd g'2)(s, ~) + ... (3.2) 

substitution of Eqs. (2.3)-(2.5) and (3.2) into Eq. (3.l) yields 

LZ2gr176 ~)= 0 (3.3a) 

~~ r = U,(s, r n = 1, 2, 3 . . . .  (3.35) 

where 
n--1 

H,(s, r = Z [2 ~(k)gtc"-k-1)--4S(#(~)g~"-k-1)--#~k)g~"-k-a) ] n = 1, 2, 3 . . . .  (3.4) 
k = 0  

with 

~ )  = w~(0 + w~(s, 0 (3.5) 
The zeroth order solution in Eq. (3.3a) is the exact solution of the energy equation for the flow, 
fr = 1. The higher order solutions in Eq. (3.3b) are the solutions of the energy equation for 
flow deviated from fr = 1. 

Two basic problems each corresponding to C =  1, Pr= l, and with a nonsimilar velocity 
profilef(s, ~) obtained from Eq: (2.1), (Z2a) and (2.2b) will be presented. The initial and boundary 
conditions of interest in the first problem to be considered are 

g(so, 4) = Gt(0 ,  g(s, O) = gw = const., g(s, oo) = 1 (3.6) 

This problem represents a boundary layer flow, which has a nonsimilar velocity profile flowing 
on a continuous moving surface of constant enthalpy, having arbitrary distribution of stagna- 
tion enthalpy profile G 1 (0 at s = s o va 0. To find a solution let 

r 0 = 1 + Ow- 1) erfc (4) + g~O,(~, 0 (3.7) 

substitution of Eq. (3.7) into Eq. (3.3a) yields the equation for g•~ ~), 

se2a?)fs, r 0 (3.8) 

with the initial and boundary conditions 

g•~ r = G1 (r - 1 - (g,~- 1) erfc (r (3.9a) 

g]~ O) = g]~ oo) = 0 (3.9b) 

Again, when the stronger condition g]~ (r for any N as ~ oo is imposed, the solution 
for g] ~ is 

g~~ s, 0-= Z B~(~/~o)-~/~ r (3.10) 
k= 2 , 4 , 6 . . .  

where 

Bk = [~/2k(k- -  1)!] 0 [G1 (~) -- 1 -- (gw-  1) erfc (~)] exp(~2)r 

k = 2 , 4 , 6  . . . .  (3.11) 
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Higher order perturbation solutions in Eq. (3.3b) can be obtained in the same manner as in 
the momentum equation, 

g(")(s, 4) = G(s, 4, s, ~)H,(g, ~)dgd~ n = 1, 2, 3 ... (3.12) 
0 also 

where the Green's function G(s, 4, s, ~) is given in Eq. (2,22). 
The second problem to be considered is a problem corresponding to a boundary layer 

which has a nonsimilar velocity profile, which flows on an adiabatic continuous moving surface, 
having an arbitrary distribution of stagnation enthalpy profile G2 (0 at s = So r 0. The initial 
and boundary conditions for this problem are 

g(so, 4) = G2(0, gr O) = O, g(s, oo) = 1 (3.13) 

The solution may be found in the same manner as for the first problem; let 

g(~ 4)= 1 +g~~ r (3.14) 

Substitution of Eq. (3.14) into Eq. (3.3a) yields again 5Pzg(z~ 4)= 0 with the initial and boun- 
dary condition g~m(s, 0 = G 2 ( 0 - 1 ,  and ,,re)t,. u2r 0)=g{2~ s, o0)=0. The solution g{2~ 4)is  
then identical to g]~ 4) given in Eq. (3.10) except the eigenvalues for this case are 1, 3, 5 ... 
and the constant B k given by 

• k t %0 B k = [ ~ / 2  ( k - 1 ) ! ]  [G2(~ ) - 1 ]  exp(~ 2) 4}k(~)d~ k = 1, 3, 5 . . . .  (3.15) 
o 

The higher order solutions are then determined from Eq. (3.12) as in the first problem: 

4. Concluding Remark 

Flows which are described by perturbations about the Blasius solution with constant tangential 
velocity at the wall have been considered. The first order perturbation solutions are the set of 
eigenfunctions which are the derivatives of the error function, and the eigenvalues are integers. 
The higher order perturbation solutions are given in terms of the Green's function and can be 
obtained by means of quadrature. 

It has been assumed that 0 <1~1 < 1 in the formulation of the perturbation solutions, how- 
ever for the case e = 1, i.e. the flow over a stationary surface, the present method still valid due 
to the fact that the perturbation solution of the Blasius solution in Eq. (2.5) is a sequence of 
successively decreasing series even for ~ = 1. It is recognized that the present method when 
applied to the case with e = 1 will converge to the exact solution slower than the method of 
ref. [5], and the higher order perturbation solutions will be needed for obtaining accurate 
results. In the case e = 0 i.e.fo (0  = 4, by limiting process as ~- .0  it can be shown that the present 
formulation is identical to that of refs. [5] and [6]. It is to be noted that in the present formula- 
tions, as well as that of ref. [5], in order the linearized theory be valid, the initial data prescribed 
at the initial station must be only slightly different from the Blasius solution. In particular if 
Fo (4) =fd (4) then the nonsimilar solution w (s, 4) vanishes; the flow is similar withf(s, 4) =fo (4). 
Although no numerical example has been attempted in this paper, the nonsimilar effects due to 
the deviation from the Blasius solution can be obtained by straightforward integrations of the 
functions related to the error function. 
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